

BBC-003-1164003

Seat No. _____

M. Sc. (Sem. IV) Examination

July - 2021

Mathematics: CMT - 4003

(Number Theory - 2)

Faculty Code: 003

Subject Code: 1164003

Time : $2\frac{1}{2}$ Hours]

[Total Marks: 70

Instructions:

- (1) Attempt any five questions from the followings.
- (2) There are total ten questions.
- (3) Each question carries equal marks.

1 Answer the following: $[7 \times 2 = 14]$

14

- a) Express the rational numbers $\frac{1055}{8}$ and $\frac{554}{11}$ in continued fraction expansion.
- b) Find the value of < -2,4,4,3,3,1 > and < 1,1,1,1,1,2 >.
- c) Find out, the values of , r_3 , r_4 of < 2,4,3,4,1,1 >.
- d) Find, four Primitive Pythagorean triplet (x, y, z) for which z > 35.
- e) Express the numbers $\sqrt{2} + 1$ and $\frac{\sqrt{5}-1}{2}$ in continued fraction expansion.
- f) Define: a) Diophantine Equation and b) Simple Continued Fraction Expansion
- g) If (x, y, z) is a Pythagorean Triplet then, show that, gcd(y, z) = gcd(x, y, z)

2) Answer the following: $[7 \times 2 = 14]$

14

- a) Prove that, $h_n k_{n-1} h_{n-1} k_n = (-1)^{n-1}$.
- b) Define: i) Quadratic irrational and ii) Pell's equation with examples.
- e) Write down the farey fractions [between 0 and 1] of 5th and 6th row.
- d) Show that, there are infinitely many solutions (x, y) of $x^2 dy^2 = 1$ in which k/y for d > 1 is not a perfect square and $k \ge 1$.
- e) Find the number, whose expansion is < 0,4,4,8,4,8,4,8,...... > and < 2,2,2,2..... >.

- f) Prove that, the g.c.d (x, y) where $\frac{x}{y}$ is a farey fraction of the n^{th} row is 1.
- g) If a > 1 is a real and if $x + x^{-1} < \sqrt{5}$ then, show that, $x < \frac{\sqrt{5}+1}{2}$ and $x^{-1} > \frac{\sqrt{5}-1}{2}$.

3 Answer the following: $[2 \times 7 = 14]$

14

- 1) State and prove, Hurwitz Inequality for continued fractions.
- 2) Prove that, if x is a rational number then its finite simple continued fraction expansion is always unique provided the last term is not equals to 1.

4 Answer the following: $[2 \times 7 = 14]$

14

- 1) Prove that, for any $n \ge 1$, there is a polynomial $f_n(x)$ with integer co-efficient of degree n and leading co-efficient 1 such that $f_n(2\cos\theta) = 2\cos n\theta$.
- 2) Prove that, the value of $f(x) = x^4 + x^3 + x^2 + x + 1$ is a perfect square for x = -1, 0 and 3 and for some values of x, f(x) is not a perfect square.

5 Answer the following: [(5+4) + 5 = 14]

14

- 1) i) Show that, if θ is a rational multiple of π then the only rational values $\cos\theta$ can take are $0.\mp\frac{1}{2}.\mp1$.
 - ii) Check, whether the equation $x^2 18y^2 = 1$ and $x^2 18y^2 = -1$ has a solution or not. Justify your answer.
- 2) Prove that, $x^2 11y^2 = -1$ has no solution in integers.

6 Answer the following: $[2 \times 7 = 14]$

14

- 1) State and prove, the necessary and sufficient condition under which the continued fraction expansion of quadratic irrational is purely periodic.
- 2) Find, the first four positive solution of $x^2 7y^2 = 1$.

7 Answer the following: $[2 \times 7 = 14]$

14

- 1) Prove that, there are infinitely many positive integers n such that $\sum n$ is a perfect square.
- 2) Show that, the sequence $\langle a_0, a_1, a_2, \dots, a_n \rangle$ is a finite simple continued fraction if and only if its value is a rational number.

8 Answer the following: $[2 \times 7 = 14]$

- 1) Suppose (x_1, y_1) is a smallest positive solution of $x^2 dy^2 = 1$ then prove that,
 - i) $(x_1 + \sqrt{d}y_1)^n$ is a solution of it for $n \ge 1$.
 - ii) Every positive solution is of the form $(x_1 + \sqrt{d}y_1)^n$ for somen.
- 2) If x is an irrational number and $\frac{a}{b}$ is a rational number with (a,b)=1 and b>0 such that, $\left|x-\frac{a}{b}\right|<\frac{1}{2b^2}$ then show that, $a=h_n$ and $b=k_n$; for some n.

9 Answer the following: $[2 \times 7 = 14]$

14

14

- 1) Prove that, if (x, y, z) is a primitive Pythagorean triplet then either
 i) x is odd and y is even or x is even and y is odd.
 ii) z is always odd.
- 2) Show that, the equation $x^4 = z^2 y^4$ has no solution in integers.

10 Answer the following: $[2 \times 7 = 14]$

14

- 1) Suppose $\langle a_0, a_1 a_2, \dots, a_n, \dots \rangle$ be an infinite sequence of integers with $a_i \geq 1$; for $i = 1, 2, 3, \dots, n$ then prove that, the subsequences r_{2j} and r_{2j-1} both converges to the same point, where h_j , k_j and r_j are defined as usual.
- 2) Suppose $C_n x^n + C_{n-1} x^{n-1} + \dots + C_0$ is a polynomial with integer co-efficient and $\frac{s}{t}$ is a rational number with t is a positive and (s, t) = 1. If $\frac{s}{t}$ is a root of this polynomial then prove that, s divide to C_0 and t divide to C_n . Hence, deduce that, if a is an integer and $x^n = a$ has a rational root then it must be an integer.